Published in

Oxford University Press, Stem Cells, 11(26), p. 2821-2831, 2008

DOI: 10.1634/stemcells.2008-0482

Links

Tools

Export citation

Search in Google Scholar

Enhanced Reprogramming of Xist by Induced Upregulation of Tsix and Dnmt3a

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Reactivation of Oct4 gene expression occurs within 2 days of fusion of somatic cells with pluripotent stem cells and within 9 days of postinfection of four transcription factors. We sought to determine whether somatic genome reprogramming is completed by the onset of Oct4 reactivation. The complex regulation of the reactivation of inactive X chromosome (Xi) serves as a model for studying reprogramming of chromatin domains. A time-course analysis of the DNA methylation, gene expression, and X inactivation-specific transcript (Xist)/Tsix RNA fluorescence in situ hybridization revealed that expression of pluripotency- and tissue-specific marker genes was reset to the level of pluripotent stem cells within 2 days of fusion, whereas reprogramming of Xist/reactivation of Xi took at least 9 days. We found that trichostatin A, which normally activates gene expression, results in downregulation of Xist. This is due to activation of Dnmt3a and Tsix, two negative regulators of Xist. Moreover, delayed reprogramming of Xist/reactivation of inactive X chromosome after cell fusion was accelerated by DNA methylation and histone deacetylation of Xist, which follow upregulation of Dnmt3a and Tsix. Disclosure of potential conflicts of interest is found at the end of this article.