Published in

American Chemical Society, Langmuir, 12(20), p. 4954-4969, 2004

DOI: 10.1021/la0353834

Links

Tools

Export citation

Search in Google Scholar

Ion Adsorption at the Rutile−Water Interface: Linking Molecular and Macroscopic Properties

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An understanding of the solution-crystal interface that connects the actual molecular structures to the macroscopic properties, was obtained, by combining in situ synchrotron X-ray measurements on submerged rutile single crystal surfaces with ab inito calculations, molecular dynamic simulations, and macroscopic ion adsorption data. All X-ray, ab inito, molecular dynamics, and ion adsorption results were broadly compatible with a Stern-based description of EDL structure. All cations were found to be adsorbed as 'inner sphere' species bonded directly to surface oxygen atoms. A link between macroscopic manifestations of metal oxide surface charging and ion adsorption and the molecule-scale interfacial structures was established.