Published in

American Chemical Society, Langmuir, 1(31), p. 602-610, 2014

DOI: 10.1021/la504328j

Links

Tools

Export citation

Search in Google Scholar

Spherical and Sheetlike Ag/AgCl Nanostructures: Interesting Photocatalysts with Unusual Facet-Dependent yet Substrate-Sensitive Reactivity

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We herein report that spherical and sheetlike Ag/AgCl nanostructures could be controllably synthesized by means of chemical reactions between AgNO3 and cetyltrimethylammonium chloride (CTAC) surfactant. In this synthesis system, AgNO3 works as silver source, while CTAC serves not only as chlorine source but also as directing reagent for a controllable nanofabrication. We show that compared to the spherical Ag/AgCl nanostructures, the sheetlike counterparts, wherein the AgCl nanospecies are predominantly enriched with {111} facets, could exhibit superior catalytic performances towards the photodegradation of methyl orange. Interestingly, we further demonstrate that when 4-chlorophenol or phenol is used as the substrates, the sheetlike Ag/AgCl nanostructures exhibit inferior catalytic reactivity, whereas the spherical counterparts display superior catalytic performances comparatively. Our results disclose new insights on the facet-dependent catalytic performances with regard to a facet-selective but substrate-sensitive photoinduced electron-hole separation.