Published in

Elsevier, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, (734), p. 152-155

DOI: 10.1016/j.nima.2013.08.066

Links

Tools

Export citation

Search in Google Scholar

PET/MRI assessment of the infarcted mouse heart

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Heart failure originating from myocardial infarction (MI) is a leading cause of death worldwide. Mouse models of ischaemia and reperfusion injury (I/R) are used to study the effects of novel treatment strategies targeting MI, however staging disease and treatment efficacy is a challenge. Damage and recovery can be assessed on the cellular, tissue or whole-organ scale but these are rarely measured in concert. Here, for the first time, we present data showing measures of injury in infarcted mice using complementary techniques for multi-modal characterisation of the heart. We use in vivo magnetic resonance imaging (MRI) to assess heart function with cine-MRI, hindered perfusion with late gadolinium enhancement imaging and muscular function with displacement encoded with stimulated echoes (DENSE) MRI. These measures are followed by positron emission tomography (PET) with 18-F-fluorodeoxyglucose to assess cellular metabolism. We demonstrate a protocol combining each of these measures for the same animal in the same imaging session and compare how the different markers can be used to quantify cardiac recovery on different scales following injury.