Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Molecules, 12(20), p. 21067-21081, 2015

DOI: 10.3390/molecules201219746

Links

Tools

Export citation

Search in Google Scholar

Technological Application of Maltodextrins According to the Degree of Polymerization

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Maltodextrin (MX) is an ingredient in high demand in the food industry, mainly for its useful physical properties which depend on the dextrose equivalent (DE). The DE has however been shown to be an inaccurate parameter for predicting the performance of the MXs in technological applications, hence commercial MXs were characterized by mass spectrometry (MS) to determine their molecular weight distribution (MWD) and degree of polymerization (DP). Samples were subjected to different water activities (aw). Water adsorption was similar at low aw, but radically increased with the DP at higher aw. The decomposition temperature (Td) showed some variations attributed to the thermal hydrolysis induced by the large amount of adsorbed water and the supplied heat. The glass transition temperature (Tg) linearly decreased with both, aw and DP. The microstructural analysis by X-ray diffraction showed that MXs did not crystallize with the adsorption of water, preserving their amorphous structure. The optical micrographs showed radical changes in the overall appearance of the MXs, indicating a transition from a glassy to a rubbery state. Based on these characterizations, different technological applications for the MXs were suggested.