Published in

Portland Press, Clinical Science, 6(123), p. 361-373, 2012

DOI: 10.1042/cs20110477

Links

Tools

Export citation

Search in Google Scholar

Moderate-to-high-intensity training and a hypocaloric Mediterranean diet enhance endothelial progenitor cells and fitness in subjects with the metabolic syndrome

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A reduction in EPC (endothelial progenitor cell) number could explain the development and progression of atherosclerosis in the MetS (metabolic syndrome). Although much research in recent years has focused on the Mediterranean dietary pattern and the MetS, the effect of this diet with/without moderate-to-high-intensity endurance training on EPCs levels and CrF (cardiorespiratory fitness) remains unclear. In the present study, the objective was to assess the effect of a Mediterranean diet hypocaloric model with and without moderate-to-high-intensity endurance training on EPC number and CrF of MetS patients. Thus 45 MetS patients (50-66 years) were randomized to a 12-week intervention with the hypocaloric MeD (Mediterranean diet) or the MeDE (MeD plus moderate-to-high-intensity endurance training). Training included two weekly supervised sessions [80% MaxHR (maximum heart rate); leg and arm pedalling] and one at-home session (65-75% MaxHR; walking controlled by heart rate monitors). Changes in: (i) EPC number [CD34(+)KDR(+) (kinase insert domain-containing receptor)], (ii) CrF variables and (iii) MetS components and IRH (ischaemic reactive hyperaemia) were determined at the end of the study. A total of 40 subjects completed all 12 weeks of the study, with 20 in each group. The MeDE led to a greater increase in EPC numbers and CrF than did the MeD intervention (P ≤ 0.001). In addition, a positive correlation was observed between the increase in EPCs and fitness in the MeDE group (r=0.72; r(2)=0.52; P ≤ 0.001). Body weight loss, insulin sensitivity, TAGs (triacylglycerols) and blood pressure showed a greater decrease in the MeDE than MeD groups. Furthermore, IRH was only improved after the MeDE intervention. In conclusion, compliance with moderate-to-high-intensity endurance training enhances the positive effects of a model of MeD on the regenerative capacity of endothelium and on the fitness of MetS patients.