Published in

Wiley Open Access, Ecosphere, 12(3), p. art118, 2012

DOI: 10.1890/es12-00155.1

Links

Tools

Export citation

Search in Google Scholar

Mapping multiple source effects on the strontium isotopic signatures of ecosystems from the Circum-Caribbean region

Journal article published in 2012 by Clement P. Bataille, Jason Laffoon ORCID, Gabriel J. Bowen
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A method for mapping strontium isotope ratio (Sr-87/(86) Sr) variations in bedrock and water has been recently developed for use in the interpretation of Sr-87/(86) Sr datasets for provenance studies. The mapping process adopted the simplifying assumption that strontium (Sr) comes exclusively from weathering of the underlying bedrock. The scope of this bedrock-only mapping method is thus limited to systems where the contributions of other sources of Sr are minimal. In this paper, we build on this Sr-87/(86) Sr mapping method by developing a mixing model of Sr fluxes from multiple sources to the bioavailable Sr pool. The new multiple source model includes: (1) quantitative calculations of Sr fluxes from bedrock weathering using an empirical rock weathering model; and (2) addition of sub-models calculating the contribution of Sr fluxes from atmospheric aerosols based on outputs from global climate model simulations. We compared the performance of the new multiple source model and the bedrock-only mapping method in predicting observed values from two datasets of bioavailable Sr-87/(86) Sr from the circum-Caribbean region (Antilles and Mesoamerica). Although the bedrock-only method performs relatively well in Mesoamerica (n=99, MAE=0.00011, RMSE=0.00073), its prediction accuracy is lower for the Antillean dataset (n=287, MAE=0.0021, RMSE=0.0027). In comparison, the new multiple source model, which accounts for the deposition of sea salt and mineral dust aerosols, performs comparably well in predicting the observed Sr-87/(86) Sr values in both datasets (MAE=0.00040, RMSE=0.00087 and MAE =0.00014, RMSE=0.0010). This study underscores the potential of using process-oriented spatial modeling to improve the predictive power of Sr isoscapes over large spatial scales and to refine sampling strategies and bioavailable Sr dataset interpretations for provenance studies.