Published in

Cell Press, Neuron, 4(75), p. 572-583, 2012

DOI: 10.1016/j.neuron.2012.08.004

Links

Tools

Export citation

Search in Google Scholar

Rates and Rhythms: A Synergistic View of Frequency and Temporal Coding in Neuronal Networks

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the CNS, activity of individual neurons has a small but quantifiable relationship to sensory representations and motor outputs. Coactivation of a few 10s to 100s of neurons can code sensory inputs and behavioral task performance within psychophysical limits. However, in a sea of sensory inputs and demand for complex motor outputs how is the activity of such small subpopulations of neurons organized? Two theories dominate in this respect: increases in spike rate (rate coding) and sharpening of the coincidence of spiking in active neurons (temporal coding). Both have computational advantages and are far from mutually exclusive. Here, we review evidence for a bias in neuronal circuits toward temporal coding and the coexistence of rate and temporal coding during population rhythm generation. The coincident expression of multiple types of gamma rhythm in sensory cortex suggests a mechanistic substrate for combining rate and temporal codes on the basis of stimulus strength.