Published in

Finnish Society of Forest Science, Silva Fennica, 3(41), 2007

DOI: 10.14214/sf.289

Links

Tools

Export citation

Search in Google Scholar

Modelling mean above and below ground litter production based on yield tables

Journal article published in 2007 by Thomas Wutzler ORCID, Martina Mund
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Estimates of litter production are a prerequisite for modeling soil carbon stocks and its changes at regional to national scale. However, the required data on biomass removal is often avail- able only for the recent past. In this study we used yield tables as a source of probable past forest management to drive a single tree based stand growth model. Next, simulated growth and timber volume was converted to tree compartment carbon stocks and biomass turnover. The study explicitly accounted for differences in site quality between stands. In addition we performed a Monte Carlo uncertainty and sensitivity analysis. We exemplify the approach by calculating long-term means of past litter production for 10 species by using yield tables that have been applied in Central Germany during the last century. We found that litter production resulting from harvest residues was almost as large as the one from biomass turnover. Dif- ferences in site quality caused large differences in litter production. At a given site quality, the uncertainty in soil carbon inputs were 14%, 17%, and 25% for beech, spruce, and pine stands, respectively. The sensitivity analysis showed that the most influential parameters were associated with foliage biomass and turnover. We conclude that rates of mean past litter production and their uncertainties can reliably be modeled on the basis of yield tables if the model accounts for 1) full rotation length including thinning and final harvest, 2) differences in site quality, and 3) environmental dependency of foliage biomass and foliage turnover.