Dissemin is shutting down on January 1st, 2025

Published in

First International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2013)

DOI: 10.1117/12.2028353

Links

Tools

Export citation

Search in Google Scholar

Sensitivity of vegetation indices to different burn and vegetation ratios using LANDSAT-5 satellite data

Proceedings article published in 2013 by M. Pleniou ORCID, N. Koutsias
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The application of vegetation indices is a very common approach in remote sensing of burned areas to either map the fire scar or estimate burn severity since they minimize the effect of exogenous factors and enhance the correlation with the internal parameters of vegetation. In a recent study we found that the original spectral channels, based on which these indices are estimated, are sensitive to external parameters of the vegetation as for example the spectral reflectance of the background soil. In such cases, the influence of the soil in the reflectance values is different in the various spectral regions depending on its type. These problems are further enhanced by the non-homogeneous pixels, as created from fractions of different types of land cover. Parnitha (Greece), where a wildfire occurred on July 2007, was established as test site. The purpose of this work is to explore the sensitivity of vegetation indices when used to estimate and map different fractions of fire-scorched (burned) and non fire-scorched (vegetated) areas. IKONOS, a very high resolution satellite imagery, was used to create a three-class thematic map to extract the percentages of vegetation, burned surfaces, and bare soil. Using an overlaid fishnet we extracted samples of completely burned, completely vegetated pixels and proportions with different burn/vegetation ratios (45%-55% burned - 45%-55% vegetation, 20%-30% burned - 70%- 80% vegetation, 70%-80% burned - 20%-30% vegetation). Vegetation indices were calculated (NDVI, IPVI, SAVI) and their values were extracted to characterize the mentioned classes. The main findings of our recent research were that vegetation indices are less sensitive to external parameters of the vegetation by minimizing external effects. Thus, the semi-burned classes were spectrally more consistent to their different fractions of scorched and non-scorched vegetation, than the original spectral channels based on which these indices are estimated. © 2013 SPIE.