Published in

Elsevier, Geomorphology, 3-4(78), p. 250-264

DOI: 10.1016/j.geomorph.2006.01.033

Links

Tools

Export citation

Search in Google Scholar

Reconstructing ancient topography through erosion modelling

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

One of the main aims of geomorphology is to understand how geomorphic processes change topography over long time scales. Over the last decades several landscape evolution models have been developed in order to study this question. However, evaluation of such models has often been very limited due to the lack of necessary field data. In this study we present a topography based hillslope erosion and deposition model that is based on the WATEM/SEDEM model structure and works on a millennial time scale. Soil erosion, transport and deposition are calculated using slope and unit contributing area. The topography is iteratively rejuvenated by taking into account modelled erosion and deposition rates, thereby simulating topographic development backwards in time. A first attempt has been made to spatially evaluate the model, using detailed estimates for historical soil erosion and sediment deposition volumes, obtained from an augering campaign in a small catchment in the Belgian Loess Belt. The results show that the model can simulate realistic soil redistribution patterns. However, further research is necessary in order to deal with artificial flaws that cause routing problems and significantly influence results. Common problems and issues related to this type of backward modelling are also discussed.