Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, The Journal of Physical Chemistry A, 50(115), p. 14470-14483, 2011

DOI: 10.1021/jp206391d

Links

Tools

Export citation

Search in Google Scholar

Structure of the Aqueous Electron: Assessment of One-Electron Pseudopotential Models in Comparison to Experimental Data and Time-Dependent Density Functional Theory

Journal article published in 2011 by John M. Herbert ORCID, Leif D. Jacobson
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The prevailing structural paradigm for the aqueous electron is that of an s-like ground-state wave function that inhabits a quasi-spherical solvent cavity, a viewpoint that is supported by numerous atomistic simulations using various one-electron pseudopotential models. This conceptual picture has recently been challenged, however, on the basis of results obtained from a new electron-water pseudopotential model that predicts a more delocalized wave function and no well-defined solvent cavity. Here, we examine this new model in comparison to two alternative, cavity-forming pseudopotential models. We find that the cavity-forming models are far more consistent with the experimental data for the electron's radius of gyration, optical absorption spectrum, and vertical electron binding energy. Calculations of the absorption spectrum using time-dependent density functional theory are in quantitative or semiquantitative agreement with experiment when the solvent geometries are obtained from the cavity-forming pseudopotential models, but differ markedly from experiment when geometries that do not form a cavity are used.