Elsevier, Journal of Hazardous Materials, 2-3(151), p. 306-315
DOI: 10.1016/j.jhazmat.2007.05.088
Full text: Unavailable
Bactericide wastewater (BIW) contains isothiazolin-ones, high salinity, toxicity and non-biodegradable organic concentrations. In order to enhance biodegradable capacity, chemical coagulation and electrochemical oxidation were applied to pretreatment processes. FeSO(4).7H2O, pH 12 and 20 mmol/l were determined as optimal chemical coagulation condition; and 15 mA/cm2 of current density, 10 ml/min of flow rate and pH 7 were chosen for the most efficient electrochemical oxidation condition at combined treatment. The wastewater which consisted mainly of isothiazolin-ones and sulfide was efficiently treated by chemical coagulation and electrochemical oxidation. The optimal pretreatment processes showed 60.9% of chemical oxygen demand (COD), 99.5% of S(2-) and 96.0% of isothiazolin-ones removal efficiency. A biological treatment system using membrane bioreactor (MBR) adding powder-activated carbon (PAC) was also investigated. COD of the wastewater which was disposed using a MBR was lower than 100 mg/l.