Published in

Elsevier, Journal of Hazardous Materials, 2-3(151), p. 306-315

DOI: 10.1016/j.jhazmat.2007.05.088

Links

Tools

Export citation

Search in Google Scholar

Treatment of Bactericide Wastewater by Combined Process Chemical Coagulation, Electrochemical Oxidation and Membrane Bioreactor

Journal article published in 2008 by Wei-Qing Han, Lian-Jun Wang, Xiu-Yun Sun, Jian-Sheng Li ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bactericide wastewater (BIW) contains isothiazolin-ones, high salinity, toxicity and non-biodegradable organic concentrations. In order to enhance biodegradable capacity, chemical coagulation and electrochemical oxidation were applied to pretreatment processes. FeSO(4).7H2O, pH 12 and 20 mmol/l were determined as optimal chemical coagulation condition; and 15 mA/cm2 of current density, 10 ml/min of flow rate and pH 7 were chosen for the most efficient electrochemical oxidation condition at combined treatment. The wastewater which consisted mainly of isothiazolin-ones and sulfide was efficiently treated by chemical coagulation and electrochemical oxidation. The optimal pretreatment processes showed 60.9% of chemical oxygen demand (COD), 99.5% of S(2-) and 96.0% of isothiazolin-ones removal efficiency. A biological treatment system using membrane bioreactor (MBR) adding powder-activated carbon (PAC) was also investigated. COD of the wastewater which was disposed using a MBR was lower than 100 mg/l.