Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Microporous and Mesoporous Materials, (209), p. 10-17

DOI: 10.1016/j.micromeso.2015.01.010

Links

Tools

Export citation

Search in Google Scholar

Fitting the porosity of carbon xerogel by CO2 activation to improve the TMP/n-octane separation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Acid catalyzed synthesis of resorcinol-formaldehyde xerogels ends up (after carbonization) into microporous carbon materials with potential use as Carbon Molecular Sieves (CMS). CO2 activation was performed in order to modify the microporosity of the carbon xerogel. As separation of linear and branched paraffins presents an industrial relevance, 2,2′,4-trymethylpentane (TMP) and n-octane dynamic adsorption was tested in order to relate textural properties of different samples with their adsorptive behaviour. Since TMP (ramified) is bulkier than n-octane (linear), carbon xerogels with slim micropores (with low activation degree) were unable to retain this compound. Increasing the burn-off degree, adsorption of TMP is favoured by the pore width increase, but simultaneously, n-octane adsorption also increased by the development of the micropore volume. So that, competitive adsorption experiment were carried out in order to analyze the separation performance of our samples. As expected, the smaller the micropore size, the better the separation results. Therefore, a compromise is needed in order to optimize the CMS or adsorptive behaviour.