Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Computational Chemistry, 20(35), p. 1481-1490, 2014

DOI: 10.1002/jcc.23643

Links

Tools

Export citation

Search in Google Scholar

Visualizing Energy Landscapes with Metric Disconnectivity Graphs

Journal article published in 2014 by Lewis C. Smeeton, Mark T. Oakley, Roy L. Johnston ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The visualization of multidimensional energy landscapes is important, providing insight into the kinetics and thermodynamics of a system, as well the range of structures a system can adopt. It is, however, highly nontrivial, with the number of dimensions required for a faithful reproduction of the landscape far higher than can be represented in two or three dimensions. Metric disconnectivity graphs provide a possible solution, incorporating the landscape connectivity information present in disconnectivity graphs with structural information in the form of a metric. In this study, we present a new software package, PyConnect, which is capable of producing both disconnectivity graphs and metric disconnectivity graphs in two or three dimensions. We present as a test case the analysis of the 69-bead BLN coarse-grained model protein and show that, by choosing appropriate order parameters, metric disconnectivity graphs can resolve correlations between structural features on the energy landscape with the landscapes energetic and kinetic properties. © 2014 Wiley Periodicals, Inc.