Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 3-4(268), p. 254-258

DOI: 10.1016/j.nimb.2009.09.057

Links

Tools

Export citation

Search in Google Scholar

XBIC/μ-XRF/μ-XAS analysis of metals precipitation in block-cast solar silicon

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The results of the investigations of the interaction between the different impurities in intentionally contaminated block-cast multi-crystalline silicon by means of synchrotron-based microprobe techniques XBIC (X-ray beam induced current), μ-XRF (X-ray fluorescence microscopy) and μ-XAS (X-ray absorption microspectroscopy) recently implemented at beamlines ID-21 and ID-22 of ESRF, Grenoble, are presented. It was found that Si3N4/SiC particles frequently observed in the upper part of multi-crystalline Si blocks represent effective sinks for Fe and Cu impurities. The amount of precipitated iron was the same order magnitude both at nitride and carbide particles. The amount of Cu precipitated at the SiC inclusions was significantly larger than that at Si3N4 rods. Chemical state of the copper precipitates was identified as copper-rich silicide Cu3Si. The anneal at 950 °C that is known to enhance oxygen precipitation in silicon was found to accompany with the enhanced formation of nanoscale iron disilicide precipitates both inside the grains and at grain boundaries.