Published in

Elsevier, Pedobiologia, 2(48), p. 171-180, 2004

DOI: 10.1016/j.pedobi.2003.12.003

Links

Tools

Export citation

Search in Google Scholar

Dual stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

More research is required to validate and refine natural abundance stable isotope ratio techniques as a tool for the investigation of the feeding ecology of soil animals and trophic relations in soil food webs. Isotope ratios of C (δ13C) and N (δ15N) were measured in herbivorous and detritivorous invertebrate groups, namely lumbricid earthworms (7 species), enchytraeid worms (3 species), slugs (3 taxa), and their potential food sources in an arable system. Intrapopulation δ15N variation in the slug Deroceras reticulatum (n=52) was large (range 4.2‰), possibly reflecting spatial variability in the food sources. Significant correlations between C:N ratios and isotope ratios in earthworms suggest that factors other than feeding may influence isotopic patterns. One enchytraeid species, Enchytraeus buchholzi, was enriched in 13C and strongly depleted in 15N compared to all other groups. Invertebrates formed a continuum when considered in relation to C and N separately, but fell into two distinct groups on the basis of combined C and N isotope ratios. The less enriched group represents herbivorous and litter-feeding species, while the more enriched group represents soil feeders. It is concluded that δ13C measurements could provide a means of assigning separate baseline δ15N values to primary and secondary decomposers, which in turn could improve the inference of higher trophic levels, omnivory and intraguild predation.