Published in

Nature Research, Nature Genetics, 1(47), p. 73-77, 2014

DOI: 10.1038/ng.3153

Nature Research, Nature Genetics, 3(47), p. 304-304, 2015

DOI: 10.1038/ng0315-304b

Links

Tools

Export citation

Search in Google Scholar

Erratum: Corrigendum: Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Temple-Baraitser syndrome (TBS) is a multisystem developmental disorder characterized by intellectual disability, epilepsy, and hypoplasia or aplasia of the nails of the thumb and great toe. Here we report damaging de novo mutations in KCNH1 (encoding a protein called ether a go-go, EAG1 or KV10.1), a voltage-gated potassium channel that is predominantly expressed in the central nervous system (CNS), in six individuals with TBS. Characterization of the mutant channels in both Xenopus laevis oocytes and human HEK293T cells showed a decreased threshold of activation and delayed deactivation, demonstrating that TBS-associated KCNH1 mutations lead to deleterious gain of function. Consistent with this result, we find that two mothers of children with TBS, who have epilepsy but are otherwise healthy, are low-level (10% and 27%) mosaic carriers of pathogenic KCNH1 mutations. Consistent with recent reports, this finding demonstrates that the etiology of many unresolved CNS disorders, including epilepsies, might be explained by pathogenic mosaic mutations. ; Peer reviewed