Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Mechanisms of Development, 6(124), p. 449-462, 2007

DOI: 10.1016/j.mod.2007.03.004

Links

Tools

Export citation

Search in Google Scholar

Conditional knock-out reveals that zygotic vezatin-null mouse embryos die at implantation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Vezatin, a protein associated to adherens junctions in epithelial cells, is already expressed in mouse oocytes and during pre-implantation development. Using a floxed strategy to generate a vezatin-null allele, we show that the lack of zygotic vezatin is embryonic lethal, indicating that vezatin is an essential gene. Homozygous null embryos are able to elicit a decidual response but as early as day 6.0 post-coitum mutant implantation sites are devoid of embryonic structures. Mutant blastocysts are morphologically normal, but only half of them are able to hatch upon in vitro culture and the blastocyst outgrowths formed after 3.5 days in culture exhibit severe abnormalities, in particular disrupted intercellular adhesion and clear signs of cellular degeneration. Notably, the junctional proteins E-cadherin and beta-catenin are delocalized and not observed at the plasma membrane anymore. These in vitro observations reinforce the idea that homozygous vezatin-null mutants die at the time of implantation because of a defect in intercellular adhesion. Together these results indicate that the absence of zygotic vezatin is deleterious for the implantation process, most likely because cadherin-dependent intercellular adhesion is impaired in late blastocysts when the maternal vezatin is lost.