Elsevier, Brain Research, (1220), p. 102-117
DOI: 10.1016/j.brainres.2008.02.086
Full text: Download
We examined effects of the task of categorizing linear frequency-modulated (FM) sweeps into rising and falling on auditory evoked magnetic fields (AEFs) from the human auditory cortex, recorded by means of whole-head magnetoencephalography. AEFs in this task condition were compared with those in a passive condition where subjects had been asked to just passively listen to the same stimulus material. We found that the M100-peak latency was significantly shorter for the task condition than for the passive condition in the left but not in the right hemisphere. Furthermore, the M100-peak latency was significantly shorter in the right than in the left hemisphere for the passive and the task conditions. In contrast, the M100-peak amplitude did not differ significantly between conditions, nor between hemispheres. We also analyzed the activation strength derived from the integral of the absolute magnetic field over constant time windows between stimulus onset and 260 ms. We isolated an early, narrow time range between about 60 ms and 80 ms that showed larger values in the task condition, most prominently in the right hemisphere. These results add to other imaging and lesion studies which suggest a specific role of the right auditory cortex in identifying FM sweep direction and thus in categorizing FM sweeps into rising and falling.