Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Journal of Applied Physics, 24(118), p. 244101, 2015

DOI: 10.1063/1.4938116

Links

Tools

Export citation

Search in Google Scholar

Structural phase diagram and pyroelectric properties of free-standing ferroelectric/non-ferroelectric multilayer heterostructures

Journal article published in 2015 by Jialan Zhang, Josh C. Agar ORCID, Lane W. Martin
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Ginzburg-Landau-Devonshire models are used to explore ferroelectric phases and pyroelectric coefficients of symmetric free-standing, thin-film trilayer heterostructures composed of a ferroelectric and two identical non-ferroelectric layers. Using BaTiO3 as a model ferroelectric, we explore the influence of temperature, in-plane misfit strain, and the non-ferroelectric layer (including effects of elastic compliance and volume fraction) on the phase evolution in the ferroelectric. The resulting phase diagram reveals six stable phases, two of which are not observed for thin films on semi-infinite cubic substrates. From there, we focus on heterostructures with non-ferroelectric layers of commonly available scandate materials which are widely used as substrates for epitaxial growth. Again, six phases with volatile phase boundaries are found in the phase diagram for the NdScO3/BaTiO3/NdScO3 trilayerheterostructures. The evolution of polarization and pyroelectric coefficients in the free-standing NdScO3 trilayer heterostructures is discussed with particular attention to the role that heterostructure design plays in influencing the phase evolution and temperature-dependence with a goal of creating enhanced pyroelectric response and advantages over traditional thin-film heterostructures.