Links

Tools

Export citation

Search in Google Scholar

Ethanol electro-oxidation on PtSN/C-ATO electrocatalysts

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

PtSn/C-ATO electrocatalysts with different Pt:Sn atomic ratios (90:10, 70:30 and 50:50) were prepared in a single step by an alcohol-reduction process using H 2 PtCl 6 .6H 2 O and SnCl 2 .2H 2 O as metal sources and ethylene glycol as solvent and reducing agent and a physical mixture of carbon Vulcan XC72 (85 wt%) and Sb 2 O 5 .SnO 2 (15 wt%) as support (C-ATO). The obtained materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The catalytic activity for ethanol electro-oxidation in acid medium was investigated by cyclic voltammetry and chroamperometry and in single direct ethanol fuel cell (DEFC). XRD analyses showed that Pt(fcc), SnO 2 , carbon and ATO phases coexist in the obtained materials. The electrochemical studies showed that PtSn/C-ATO electrocatalysts were more active for ethanol electro-oxidation than PtSn/C electrocatalyst. The experiments at 100 o C on a single DEFC showed that the power density of the cell using PtSn/C-ATO (90:10) was nearly 100% higher than the one obtained using PtSn/C (50:50). FTIR measurements showed that the addition of ATO to PtSn/C favors the formation of acetic acid as a product while for PtSn/C acetaldehyde was the principal product formed.