Published in

American Physical Society, Physical Review Letters, 11(111), 2013

DOI: 10.1103/physrevlett.111.113601

Links

Tools

Export citation

Search in Google Scholar

Stochastic Heisenberg Limit: Optimal Estimation of a Fluctuating Phase

Journal article published in 2013 by Dominic W. Berry, Michael J. W. Hall, Howard M. Wiseman ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The ultimate limits to estimating a fluctuating phase imposed on an optical beam can be found using the recently derived continuous quantum Cramér-Rao bound. For Gaussian stationary statistics, and a phase spectrum scaling asymptotically as ω^{-p} with p>1, the minimum mean-square error in any (single-time) phase estimate scales as N^{-2(p-1)/(p+1)}, where N is the photon flux. This gives the usual Heisenberg limit for a constant phase (as the limit p→∞) and provides a stochastic Heisenberg limit for fluctuating phases. For p=2 (Brownian motion), this limit can be attained by phase tracking.