Published in

Wiley, Genes to Cells, 3(13), p. 269-284, 2008

DOI: 10.1111/j.1365-2443.2008.01167.x

Links

Tools

Export citation

Search in Google Scholar

Amano, H. et al. Interaction and localization of Necl-5 and PDGF receptor at the leading edges of moving NIH3T3 cells: implications for directional cell movement. Genes Cells 13, 269-284

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It was previously shown that platelet-derived growth factor (PDGF) receptor physically and functionally interacts with integrin alpha(v)beta(3), effectively inducing cell movement. We previously showed that Necl-5, originally identified as a poliovirus receptor, interacts with integrin alpha(v)beta(3) and enhances its clustering and the formation of focal complexes at the leading edges of moving cells, resulting in an enhancement of cell movement. We showed here that Necl-5 additionally interacts with PDGF receptor in NIH3T3 cells and regulates the interaction between PDGF receptor and integrin alpha(v)beta(3), effectively inducing directional cell movement. PDGF receptor co-localized with Necl-5 and integrin alpha(v)beta(3) at peripheral ruffles over lamellipodia, which were formed at the leading edges of moving cells in response to PDGF, but not at the focal complexes under these ruffles, whereas Necl-5 and integrin alpha(v)beta(3) co-localized at these focal complexes. The clustering of these three molecules at peripheral ruffles required the activation of integrin alpha(v)beta(3) by vitronectin and the PDGF-induced activation of the small G protein Rac and subsequent re-organization of the actin cytoskeleton. These results indicate a key role of Necl-5 in directional cell movement by physically and functionally interacting with both integrin alpha(v)beta(3) and PDGF receptor.