Published in

Elsevier, Advanced Engineering Informatics, 3(29), p. 727-738, 2015

DOI: 10.1016/j.aei.2015.07.005

Links

Tools

Export citation

Search in Google Scholar

Rough set and PSO-based ANFIS approaches to modeling customer satisfaction for affective product design

Journal article published in 2015 by Huimin Jiang, Ck K. Kwong, Kwm W. M. Siu, Y. Liu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Facing fierce competition in marketplaces, companies try to determine the optimal settings of design attribute of new products from which the best customer satisfaction can be obtained. To determine the settings, customer satisfaction models relating affective responses of customers to design attributes have to be first developed. Adaptive neuro-fuzzy inference systems (ANFIS) was attempted in previous research and shown to be an effective approach to address the fuzziness of survey data and nonlinearity in modeling customer satisfaction for affective design. However, ANFIS is incapable of modeling the relationships that involve a number of inputs which may cause the failure of the training process of ANFIS and lead to the 'out of memory' error. To overcome the limitation, in this paper, rough set (RS) and particle swarm optimization (PSO) based-ANFIS approaches are proposed to model customer satisfaction for affective design and further improve the modeling accuracy. In the approaches, the RS theory is adopted to extract significant design attributes as the inputs of ANFIS and PSO is employed to determine the parameter settings of an ANFIS from which explicit customer satisfaction models with better modeling accuracy can be generated. A case study of affective design of mobile phones is used to illustrate the proposed approaches. The modeling results based on the proposed approaches are compared with those based on ANFIS, fuzzy least-squares regression (FLSR), fuzzy regression (FR), and genetic programming-based fuzzy regression (GP-FR). Results of the training and validation tests show that the proposed approaches perform better than the others in terms of training and validation errors. ; School of Design ; Department of Industrial and Systems Engineering