Published in

American Physiological Society, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 3(291), p. R551-R557, 2006

DOI: 10.1152/ajpregu.00514.2005

Links

Tools

Export citation

Search in Google Scholar

Reduced stress- and cold-induced increase in energy expenditure in interleukin-6-deficient mice

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Interleukin-6 (IL-6) deficient (-/-) mice develop mature onset obesity. Pharmacological studies have shown that IL-6 has direct lipolytic effects and when administered centrally increases sympathetic outflow. However, the metabolic functions of endogenous IL-6 are not fully elucidated. We aimed to investigate the effect of IL-6 deficiency with respect to cold exposure and cage-switch stress, that is, situations that normally increase sympathetic outflow. Energy metabolism, core temperature, heart rate, and activity were investigated in young preobese IL-6-/- mice by indirect calorimetry together with telemetry. Baseline measurements and the effect of cage-switch stress were investigated at thermoneutrality (30 degrees C) and at room temperature (20 degrees C). The effect of cold exposure was investigated at 4 degrees C. At 30 degrees C, the basal core temperature was 0.6 +/- 0.24 degrees C lower in IL-6-/- compared with wild-type mice, whereas the oxygen consumption did not differ significantly. The respiratory exchange ratio at 20 degrees C was significantly higher and the calculated fat utilization rate was lower in IL-6-/- mice. In response to cage-switch stress, the increase in oxygen consumption at both 30 and 20 degrees C was lower in IL-6-/- than in wild-type mice. The increase in heart rate was lower in IL-6-/- mice at 30 degrees C. At 4 degrees C, both the oxygen consumption and core temperature were lower in IL-6-/- compared with wild-type mice, suggesting a lower cold-induced thermogenesis in IL-6-/- mice. The present results indicate that endogenous IL-6 is of importance for stress- and cold-induced energy expenditure in mice.