Dissemin is shutting down on January 1st, 2025

Published in

2011 18th IEEE International Conference on Image Processing

DOI: 10.1109/icip.2011.6116531

Links

Tools

Export citation

Search in Google Scholar

Fast FPGA-based architecture for pedestrian detection based on covariance matrices

Proceedings article published in 2011 by Samuele Martelli, Diego Tosato, Marco Cristani, Vittorio Murino ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pedestrian detection is a crucial task in several video surveillance and automotive scenarios, but only a few detection systems are designed to be realized on an embedded architecture, allowing to increase the processing speed which is one of the key requirements in real applications. In this paper, we propose a novel SoC (System on Chip) architecture for fast pedestrian detection in video. Our implementation is based on a linear SVM (Support Vector Machine) classification framework, learned on a set of overlapped image patches. Each patch is described by a covariance matrix of a set of image features. Exploiting the inner parallelism of the FPGA (Field Programmable Gate Array) boards, we dramatically accelerate the covariance matrices computation that plays a crucial role in the framework. In the experiments, we show the effectiveness and the efficiency of our pedestrian detection system, reaching a detection speed of 132 fps at VGA resolution.