Published in

American Diabetes Association, Diabetes, 7(47), p. 1006-1013

DOI: 10.2337/diabetes.47.7.1006

Links

Tools

Export citation

Search in Google Scholar

Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells

Journal article published in 1998 by E. Hajduch ORCID, Dr R. Alessi ORCID, B. A. Hemmings, H. S. Hundal, A. L. Et
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Phosphatidylinositol 3-kinase (PI 3-kinase) has been implicated in the regulation of numerous cellular processes, including the insulin-induced regulation of glycogen synthase kinase 3 (GSK-3) and glucose transport. The hormonal-induced inactivation of GSK-3 is mediated by protein kinase B (PKB), a downstream target of PI 3-kinase, whose involvement in other insulin-stimulated responses remains poorly defined at present. In this study, we investigated whether the uptake of glucose, system A amino acid transport, and cellular protein synthesis are regulated by PKBalpha in L6 skeletal muscle cells. L6 cells stably overexpressing wild-type PKBalpha (wtPKBalpha) or a constitutively active membrane-targeted PKBalpha (mPKBalpha) showed a 3- and 15-fold increase in PKB activity, respectively. Both wtPKBalpha and mPKBalpha expression led to a significant increase in the basal uptake of glucose and methyl-aminoisobutyric acid (a substrate for the system A amino acid transporter), at least to a level seen in control cells treated with insulin. The stimulation in glucose transport was facilitated, in part, by the increased translocation of GLUT4 to the plasma membrane and also through an increase in the cellular synthesis of GLUT3. In the absence of insulin, only muscle cells expressing the constitutively active PKBalpha showed a significant increase in protein synthesis and an inhibition in GSK-3. Our results indicate that constitutive activation of PKBalpha in skeletal muscle stimulates the uptake of glucose, system A amino acids, and protein synthesis and promotes the inactivation of GSK-3. These observations imply that PKBalpha may have a role in the insulin-regulated control of these processes in skeletal muscle.