Published in

Portland Press, Biochemical Society Transactions, 6(39), p. 1844-1848, 2011

DOI: 10.1042/bst20110709

Links

Tools

Export citation

Search in Google Scholar

A haloarchaeal ferredoxin electron donor that plays an essential role in nitrate assimilation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the absence of ammonium, many organisms, including the halophilic archaeon Haloferax volcanii DS2 (DM3757), may assimilate inorganic nitrogen from nitrate or nitrite, using a ferredoxin-dependent assimilatory NO3−/NO2− reductase pathway. The small acidic ferredoxin Hv-Fd plays an essential role in the electron transfer cascade required for assimilatory nitrate and nitrite reduction by the cytoplasmic NarB- and NirA-type reductases respectively. UV–visible absorbance and EPR spectroscopic characterization of purified Hv-Fd demonstrate that this protein binds a single [2Fe–2S] cluster, and potentiometric titration reveals that the cluster shares similar redox properties with those present in plant-type ferredoxins.