American Physical Society, Physical review B, 19(87)
DOI: 10.1103/physrevb.87.195308
Full text: Download
Charges and spins confined in quantum dots and quantum dot molecules are of great interest for new optoelectronic device applications. The strong confinement in quantum dot structures leads to unique interactions among electrons and holes. A detailed understanding of the magnitude and dynamics of these charge-carrier interactions will be essential to the development of future devices. We present experimental evidence of holes trapped in metastable higher-energy states of InAs/AlGaAs/InAs quantum dot molecules. We present a model for the kinetic pathways that lead to this dynamic hole trapping and analyze the consequences of dynamic hole trapping for carrier relaxation and optical emission.