Published in

Elsevier, Journal of Magnesium and Alloys, 2(2), p. 165-174, 2014

DOI: 10.1016/j.jma.2014.06.001

Links

Tools

Export citation

Search in Google Scholar

First-principles study of structural stability and elastic properties of MgPd3 and its hydride

Journal article published in 2014 by Dong-Hai Wu ORCID, Hai-Chen Wang, Liu-Ting Wei, Rong-Kai Pan, Bi-Yu Tang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Theoretical study of structural stability and elastic properties of α- and β-MgPd3 intermetallic compounds as well as their hydrides have been carried out based on density functional theory. The results indicate α-MgPd3 is more stable than β phase with increased stability in their hydrides. The calculated elastic constants of α-MgPd3 are overall larger than β phase. After hydrogenation, the elastic constants are enlarged. And the elastic moduli exhibit similar tendency. The anisotropy of α-MgPd3 is larger than β phase, and the hydrides demonstrate larger anisotropy. Their ductility follows the order of α-MgPd3H0.5 < α-MgPd3 < β-MgPd3H < β-MgPd3. Compared with β phase, higher Debye temperature of α-MgPd3 implies stronger covalent interaction, and the Debye temperature of hydrides increases slightly. The electronic structures demonstrate that the Pd–Pd interaction is stronger than Pd–Mg, and Pd–H bonds play a significant role in the phase stability and elastic properties of hydrides.