Elsevier, Journal of Inorganic Biochemistry, (127), p. 13-23, 2013
DOI: 10.1016/j.jinorgbio.2013.06.010
Full text: Download
Diastereomeric complexes of the general formulae Λ- and Δ-[Ru(bpy)2(4-COY-4'-Mebpy)]Cl2 where bpy=2,2'-bipyridine and Y=Gly-Lys(1)-Lys(2)CONH2, Lys(1)-Gly-Lys(2)CONH2, Lys(1)-Lys(2)-GlyCONH2, were synthesized and characterized. The ability of these compounds to bind to the oligonucleotide duplex d(5'-CGCGAATTCGCG-3') was studied with NMR techniques. Complex Λ-2, Λ-[Ru(bpy)2(4-COLys(1)-Gly-Lys(2)CONH2),4'-Mebpy)]Cl2 (Mebpy=methyl-2,2'-bipyridine), interacts non-specifically causing changes for both complex and oligonucleotide (1)H NMR signals. Both Λ-1, Λ-[Ru(bpy)2(4-COGly-Lys(1)-Lys(2)CONH2),4'-Mebpy)]Cl2 and Λ-3, Λ-[Ru(bpy)2(4-COLys(1)-Lys(2)-GlyCONH2),4'-Mebpy)]Cl2, were bound to the oligonucleotide through both lysine aliphatic chains, indicating that the side chains of the sequential lysines create a kind of "clamp" to connect the complex with the oligonucleotide. Complex Δ-1, Δ-[Ru(bpy)2(4-COGly-Lys(1)-Lys(2)CONH2),4'-Mebpy)]Cl2, interacts with the oligonucleotide duplex with both lysine side chains in a manner similar to Λ-1. Δ-2, Δ-[Ru(bpy)2(4-COLys(1)-Gly-Lys(2)CONH2),4'-Mebpy)]Cl2, interacts with the oligonucleotide with the bipyridine ligands. In addition, the formation of a hydrogen bond between the Gly-NH and the carbonyl groups of the oligonucleotide bases was detected. A completely different binding mode was observed for Δ-3 Δ-[Ru(bpy)2(4-COLys(1)-Lys(2)-GlyCONH2),4'-Mebpy)]Cl2, which at a ratio of 1:1 ([Ru]/[nucleotide]) opens the oligonucleotide strands. In addition, participation of all three peptidic NH of Δ-3 in hydrogen bonds was observed.