Published in

American Chemical Society, Langmuir, 19(25), p. 11940-11946, 2009

DOI: 10.1021/la9016382

Links

Tools

Export citation

Search in Google Scholar

Osmosis Based Method Drives the Self-Assembly of Polymeric Chains into Micro- and Nanostructures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Polymers derived from monomers with a variety of functionalities provide materials with a vast range of properties and applications. Worldwide research has recently developed a wide number of methods suitable for the preparation of polymeric materials of nanometric dimensions, in view of the fact that, at the nanoscale level, new and unexpected properties emerge and lead to innovative applications. In this framework, we have exploited an easy method for the generation of nanostructures, regardless of the chemical structure of the pristine amorphous polymers, that is, biopolymers (e.g., polysaccharides) and synthetic, functional, and structural polymers (i.e, polystyrene, polymethylmethacrylates, polyacetylenes, and polymetallaynes). The nanostructure of these macromolecules, considered as the prototypes of various classes of polymeric materials, was achieved by using a simple and versatile procedure based on an osmotic method (OBM). Depending on the choice of solvent/nonsolvent pairs, the dialysis membrane molecular weight cutoff (MWCO), temperature, and polymer concentration, different morphologies can be obtained (e.g., spheres, sponges, disks, and fibers); also, a tuning of the nanoparticle dimensions ranging from the micro- to nanoscale has been obtained.