Published in

2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)

DOI: 10.1109/embc.2015.7320203

Links

Tools

Export citation

Search in Google Scholar

Estimating a Dynamic State to Relate Neural Spiking Activity to Behavioral Signals during Cognitive Tasks

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An important question in neuroscience is understanding the relationship between high-dimensional elec-trophysiological data and complex, dynamic behavioral data. One general strategy to address this problem is to define a low-dimensional representation of essential cognitive features describing this relationship. Here we describe a general state-space method to model and fit a low-dimensional cognitive state process that allows us to relate behavioral outcomes of various tasks to simultaneously recorded neural activity across multiple brain areas. In particular, we apply this model to data recorded in the lateral prefrontal cortex (PFC) and caudate nucleus of non-human primates as they perform learning and adaptation in a rule-switching task. First, we define a model for a cognitive state process related to learning, and estimate the progression of this learning state through the experiments. Next, we formulate a point process generalized linear model to relate the spiking activity of each PFC and caudate neuron to * the stimated learning state. Then, we compute the posterior densities of the cognitive state using a recursive Bayesian decoding algorithm. We demonstrate that accurate decoding of a learning state is possible with a simple point process model of population spiking. Our analyses also allow us to compare decoding accuracy across neural populations in the PFC and caudate nucleus.