Published in

Elsevier, Solid State Sciences, 1(14), p. 191-196

DOI: 10.1016/j.solidstatesciences.2011.10.019

Links

Tools

Export citation

Search in Google Scholar

CTAB-assisted hydrothermal synthesis of YVO4:Eu3+ powders in a wide pH range

Journal article published in 2012 by Juan Wang, Mirabbos Hojamberdiev ORCID, Yunhua Xu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO4:Eu3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO4:Eu3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO4:Eu3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO4:Eu3+ powders.