Published in

Elsevier, Molecular and Cellular Endocrinology, (417), p. 191-199, 2015

DOI: 10.1016/j.mce.2015.09.028

Links

Tools

Export citation

Search in Google Scholar

Developmental Exposure to Bisphenol A Alters Expression and DNA Methylation of Fkbp5, an Important Regulator of the Stress Response

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bisphenol A (BPA), an abundant endocrine disruptor, affects stress-responsiveness and related behaviors in children. In rats, perinatal BPA exposure modifies stress response in pubertal offspring via unknown mechanisms. Here we examined possible epigenetic modifications in the glucocorticoid receptor gene and its regulator Fkbp5 in hypothalamus and hippocampus of exposed offspring. We found increased DNA methylation of Fkbp5 and reduced protein levels in the hippocampus of exposed male rats. Similar effects were obtained in a male hippocampal cell line when exposed to BPA during differentiation. The estrogen receptor (ER) antagonist ICI 182780 or ERβ knock-down affected Fkbp5 expression and methylation similarly to BPA. Further, BPA's effect on Fkbp5 was abolished upon knock-down of ERβ, suggesting a role for this receptor in mediating BPA's effects on Fkbp5. These data demonstrate that developmental BPA exposure modifies Fkbp5 methylation and expression in male rats, which may be related to its impact on stress responsiveness.