Published in

American Society for Clinical Investigation, Journal of Clinical Investigation, 4(113), p. 551-560, 2004

DOI: 10.1172/jci19133

American Society for Clinical Investigation, Journal of Clinical Investigation, 4(113), p. 551-560

DOI: 10.1172/jci200419133

Links

Tools

Export citation

Search in Google Scholar

Inhibition of airway remodeling in IL-5–deficient mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

To determine the role of IL-5 in airway remodeling, IL-5-deficient and WT mice were sensitized to OVA and challenged by repetitive administration of OVA for 3 months. IL-5-deficient mice had significantly less peribronchial fibrosis (total lung collagen content, peribronchial collagens III and V) and significantly less peribronchial smooth muscle (thickness of peribronchial smooth muscle layer, alpha-smooth muscle actin immunostaining) compared with WT mice challenged with OVA. WT mice had a significant increase in the number of peribronchial cells staining positive for major basic protein and TGF-beta. In contrast, IL-5-deficient mice had a significant reduction in the number of peribronchial cells staining positive for major basic protein, which was paralleled by a similar reduction in the number of cells staining positive for TGF-beta, suggesting that eosinophils are a significant source of TGF-beta in the remodeled airway. OVA challenge induced significantly higher levels of airway epithelial alphaVbeta6 integrin expression, as well as significantly higher levels of bioactive lung TGF-beta in WT compared with IL-5-deficient mice. Increased airway epithelial expression of alphaVbeta6 integrin may contribute to the increased activation of latent TGF-beta. These results suggest an important role for IL-5, eosinophils, alphaVbeta6, and TGF-beta in airway remodeling.