Published in

Wiley, Journal of Neuroendocrinology, 5(22), p. 343-354, 2010

DOI: 10.1111/j.1365-2826.2010.01961.x

Links

Tools

Export citation

Search in Google Scholar

State-Dependent Plasticity in Vasopressin Neurones: Dehydration-Induced Changes in Activity Patterning

Journal article published in 2010 by V. Scott, C. H. Brown ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Moderate dehydration impairs concentration and co-ordination, whereas severe dehydration can cause seizures, brain damage or death. To slow the progression of dehydration until body fluids can be replenished by drinking, the increased body fluid osmolality associated with dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland. Increased vasopressin secretion reduces water loss in the urine by promoting water reabsorption in the collecting ducts of the kidney. Vasopressin secretion is largely determined by action potential discharge in vasopressin neurones, and depends on both the rate and pattern of discharge. Vasopressin neurone activity depends on intrinsic and extrinsic mechanisms. We review recent advances in our understanding of the physiological regulation of vasopressin neurone activity patterning and the mechanisms by which this is altered to cope with the increased secretory demands of dehydration.