Published in

Wiley, ChemPhysChem, 2(10), p. 374-383, 2009

DOI: 10.1002/cphc.200800583

Links

Tools

Export citation

Search in Google Scholar

Ab initio Study of the Interactions between CO2and N-Containing Organic Heterocycles

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The interactions between carbon dioxide and organic heterocyclic molecules containing nitrogen are studied by using high-accuracy ab initio methods. Various adsorption positions are examined for pyridine. The preferred configuration is an in-plane configuration. An electron donor-electron acceptor (EDA) mechanism between the carbon of CO2 and the nitrogen of the heterocycle and weak hydrogen bonds stabilize the complex, with important contributions from dispersion and induction forces. Quantitative results of the binding energy of CO2 to pyridine (C5H5N), pyrimidine, pyridazine, and pyrazine (C4H4N2), triazine (C3H3N3), imidazole (C 3H4N2), tetrazole (CH2N 4), purine (C5H4N4), imidazopyridine (C6H5N3), adenine (C5H 5N5), and imidazopyridamine (C6H 6N4) for the in-plane configuration are presented. For purine, three different binding sites are examined. An approximate coupled-cluster model including single and double excitations with a perturbative estimation of triple excitations (CCSD(T)) is used for benchmark calculations. The CCSD(T) basis-set limit is approximated from explicitly correlated second-order Møller-Plesset (MP2-F12) calculations in the aug-cc-pVTZ basis in conjunction with contributions from single, double, and triple excitations calculated at the CCSD(T)/6-311++G** level of theory. Extrapolations to the MP2 basis-set limit coincide with the MP2-F12 calculations. The results are interpreted in terms of electrostatic potential maps and electron density redistribution plots. The effectiveness of density functional theory with the empirical dispersion correction of Grimme (DFT-D) is also examined.