Published in

IOP Publishing, Journal of Physics: Condensed Matter, 42(24), p. 424205

DOI: 10.1088/0953-8984/24/42/424205

Links

Tools

Export citation

Search in Google Scholar

The influence of dispersion interactions on the hydrogen adsorption properties of expanded graphite

Journal article published in 2012 by Yungok Ihm, Valentino R. Cooper ORCID, Lujian Peng, James R. Morris
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We demonstrate the importance of London dispersion forces in defining the adsorption capacity within expanded graphite, a simple model of the more complex experimental geometries of activated carbon, using a combination of the non-local correlation functional of Dion et al paired with a recent exchange functional of Cooper (vdW-DF(C09x)) and a classical continuum model. Our results indicate that longer ranged interactions due to dispersion forces increase the volume over which molecules interact with a porous medium. This significantly enhances the adsorption density within a material, and explains recent experimental work showing that the densification of H(2) in carbon nanopores is sensitive to the pore size. Remarkably, our slit pore geometries give adsorption densities of up to 3 wt% at 298 K and 20 MPa which correlates well with experimental values for 9 Å pores-a value that could not be predicted using local density approximation (LDA) calculations. In its entirety, this work presents a powerful approach for assessing molecular uptake in porous media and may have serious impacts on efforts to optimize the properties of these materials.