Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, Autophagy, 7(11), p. 1114-1129, 2015

DOI: 10.1080/15548627.2015.1034406

Links

Tools

Export citation

Search in Google Scholar

The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Autophagy is induced during differentiation of human monocytes into macrophages that is mediated by CSF1/CSF-1/M-CSF (colony stimulating factor 1 [macrophage]). However, little is known about the molecular mechanisms that link CSF1 receptor engagement to the induction of autophagy. Here we show that the CAMKK2-PRKAA1-ULK1 pathway is required for CSF1-induced autophagy and human monocyte differentiation. We reveal that this pathway links P2RY6 to the induction of autophagy, and we decipher the signalling network that links the CSF1 receptor to P2RY6-mediated autophagy and monocyte differentiation. In addition, we show that the physiological P2RY6 ligand UDP and the specific P2RY6 agonist MRS2693 can restore normal monocyte differentiation through reinduction of autophagy in primary myeloid cells from some but not all chronic myelomonocytic leukemia (CMML) patients. Collectively, our findings highlight an essential role for PRKAA1-mediated autophagy during differentiation of human monocytes and pave the way for future therapeutic interventions for CMML.