Published in

Elsevier, Journal of Food Engineering, 4(115), p. 443-451, 2013

DOI: 10.1016/j.jfoodeng.2012.03.033

Links

Tools

Export citation

Search in Google Scholar

Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study aimed at evaluating the potential of maltodextrin combination with different wall materials in the microencapsulation of flaxseed oil by spray drying, in order to maximize encapsulation efficiency and minimize lipid oxidation. Maltodextrin (MD) was mixed with gum Arabic (GA), whey protein concentrate (WPC) or two types of modified starch (Hi-Cap 100 TM and Capsul TA Ò) at a 25:75 ratio. The feed emul-sions used for particle production were characterized for stability, viscosity and droplet size. The best encapsulation efficiency was obtained for MD:Hi-Cap followed by the MD:Capsul combination, while the lowest encapsulation efficiency was obtained for MD:WPC, which also showed poorer emulsion stability. Particles were hollow, with the active material embedded in the wall material matrix, and had no apparent cracks or fissures. During the oxidative stability study, MD:WPC combination was the wall material that best protected the active material against lipid oxidation.