Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Toxicology and Industrial Health, 11(32), p. 1859-1865, 2016

DOI: 10.1177/0748233715590919

Links

Tools

Export citation

Search in Google Scholar

Evaluation of DNA damage and DNA repair capacity in occupationally lead-exposed workers

Journal article published in 2015 by Ayse Tarbin Jannuzzi ORCID, Buket Alpertunga
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Occupational lead (Pb) exposure remains a significant concern for workers in Turkey. Health hazards of Pb exposure have been investigated in various test systems, but results regarding its potential genotoxic effects on exposed populations are contradictory. In this study, a control group and an exposed group were studied, each consisting of 25 male subjects. Blood lead levels (BLLs) were estimated by graphite furnace atomic absorption spectrometry. Genotoxic effects of Pb exposure were studied in leukocytes by comet and challenge assays. The effect of Pb exposure to DNA repair capacity was evaluated following in vitro hydrogen peroxide exposure. Pb-exposed workers had significantly higher BLLs than the control group ( p < 0.01). DNA damage in exposed workers had a significantly higher percentage of DNA in tail than the control group ( p < 0.05). In the challenge assay, it was found that the mean DNA% repair capacity was significantly decreased in Pb-exposed workers ( p < 0.01). The results indicated that occupational Pb exposure is associated with DNA damage and causes decrease in DNA% repair capacity, indicating a potential health concern for occupationally Pb-exposed populations.