Dissemin is shutting down on January 1st, 2025

Published in

Psychiatry Online, The American Journal of Psychiatry, 1(172), p. 82-93

DOI: 10.1176/appi.ajp.2014.13101306

Links

Tools

Export citation

Search in Google Scholar

Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

Journal article published in 2014 by Shugart Yy, Dongmei Yu, Carol A. Mathews, Scharf Jm, Jeremiah M. Scharf, Neale Bm, Benjamin M. Neale, Lea K. Davis, Davis Lk, Eric R. Gamazon, Eske M. Derks, Derks Em, Patrick Evans, Christopher K. Edlund, Edlund Ck and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objective: Obsessive-compulsive disorder (OCD) and Tourette’s syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette’s syndrome and OCD. Method: The authors conducted a GWAS in 2,723 cases (1,310 with OCD, 834 with Tourette’s syndrome, 579 with OCD plus Tourette’s syndrome/chronic tics), 5,667 ancestry-matched controls, and 290 OCD parent-child trios. GWAS summary statistics were examined for enrichment of functional variants associated with gene expression levels in brain regions. Polygenic score analyses were conducted to investigate the genetic architecture within and across the two disorders. Results: Although no individual single-nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels (expression quantitative loci, or eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10−4), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, Tourette’s syndrome had a smaller, nonsignificant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and co-occurring Tourette’s syndrome/chronic tics were included in the analysis (p=0.01). Conclusions: Previous work has shown that Tourette’s syndrome and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of these two disorders. Furthermore, OCD with co-occurring Tourette’s syndrome/chronic tics may have different underlying genetic susceptibility compared with OCD alone.