Published in

Elsevier, Journal of Membrane Science, 2(188), p. 251-262

DOI: 10.1016/s0376-7388(01)00383-0

Links

Tools

Export citation

Search in Google Scholar

Mass-transfer in hollow-fiber modules for extraction and back-extraction of copper(II) with LIX64N carriers

Journal article published in 2001 by Su-Hsia Lin, Ruey-Shin Juang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The extraction of Cu2+ ions from sulfate solutions across a hollow-fiber membrane containing LIX64N carriers dissolved in kerosene has been studied, in which Cu(II) was then back-extracted to a stripping-phase containing HCl. Experiments were conducted as a function of the initial feed concentration of Cu2+ (1–10 mol/m3), feed pH (2–6), the carrier concentration (0.1–0.4 mol/dm3), and stripping acidity (0.4–4 mol/dm3). A mass-transfer model was developed to predict the extent of Cu2+ extraction from aqueous feed in hollow-fiber contactors. The calculated time profiles of Cu2+ concentrations were in reasonable agreement with the experimental data (average standard deviation 9% in both extraction and back-extraction modules). The rate-controlling step(s) of such dispersion-free extraction processes were identified. It was shown that the extraction was governed by combined interfacial reaction and aqueous diffusion under the ranges studied, whereas the back-extraction was limited by combined membrane diffusion and aqueous diffusion.