Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, International Journal of Refrigeration, (53), p. 163-176

DOI: 10.1016/j.ijrefrig.2015.01.008

Links

Tools

Export citation

Search in Google Scholar

Performance analysis of a solar cooling plant based on a liquid desiccant evaporative cooler

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Summer air conditioning represents a growing market in buildings worldwide, with a significant growth rate observed in European commercial and residential buildings. Available heat driven cooling technologies can be used in combination with solar thermal collectors to reduce the load caused by air conditioning on the electric utilities and to reduce the environmental impact. This work reports a performance analysis of an open cycle solar cooling plant. The plant, installed in Northern Italy, is based on a liquid desiccant evaporative cooler coupled with a solar field. Experimental tests run during summer show average primary energy ratio and primary energy saving index of about 1.6 and 30%, respectively. Though this performance is satisfactorily, the regeneration unit always operated near the lower bound of the nominal temperature range. Therefore, optimization of the solar system design could lead to higher performance.