Published in

Elsevier, Acta Materialia, 19(57), p. 5667-5680, 2009

DOI: 10.1016/j.actamat.2009.07.062

Links

Tools

Export citation

Search in Google Scholar

High-temperature stability, structure and thermoelectric properties of CaMn1-xNbxO3 phases

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Polycrystalline perovskite-type CaMn1-xNbxO3 phases (with x=0.02,0.05,0.08 and 0.10) were investigated with regard to their structure, microstructure and thermal stability as a function of temperature. The studied phases revealed a complex microstructure at room temperature with 90° twinned domains. At high temperatures, the manganate phases underwent a structural transition from orthorhombic to cubic symmetry, as confirmed by in situ high-temperature X-ray powder diffraction and electron diffraction data. Thermogravimetric heating/cooling studies showed a reversible thermal reduction/reoxidation process that occurred above a defined transition temperature. A possible mechanism relating the high-temperature structural transition and the thermal reduction process of slightly substituted CaMnO3 phases was proposed. The thermal reduction process resulted in a change in the Mn3+/Mn4+ concentrations in the Mn sublattice, and therefore in a modification of the transport properties. A comprehensive study examined the impact of both phenomena on the electrical and thermal transport properties.