Elsevier, Journal of Theoretical Biology, (347), p. 44-53, 2014
DOI: 10.1016/j.jtbi.2014.01.015
Full text: Download
The mathematical modeling of the NF-κB oscillations has attracted considerable attention in recent times, but there is a lack of simple models in the literature that can capture the main features of the dynamics of this important transcription factor. For this reason we propose a simple model that summarizes the key steps of the NF-κB pathway. We show that the resulting 5-dimensional dynamical system can reproduce different phenomena observed in experiments. Our model can display smooth and spiky oscillations in the amount of nuclear NF-κB and can reproduce the variety of dynamics observed when different stimulations such as TNF-α and LPS are used. Furthermore we show that the model can be easily extended to reproduce the expression of early, intermediate and late genes upon stimulation. As a final example we show that our simple model can mimic the different transcriptional outputs observed when cells are treated with two different drugs leading to nuclear localization of NF-κB: Leptomycin B and Cycloheximide.