Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, New Journal of Physics, 4(14), p. 043021, 2012

DOI: 10.1088/1367-2630/14/4/043021

Links

Tools

Export citation

Search in Google Scholar

Effect of the global to local magnetic field ratio on the ablation modulations on X-pinches driven by 80 kA peak current

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report the results of experiments where a quantitative analysis of the behavior of ablation modulations in X-pinches (including wavelength and contrast between streams) was carried out as a function of distance from the cross-point, and consequently, as a function of the global to local magnetic field ratio. Experiments were performed using two tungsten wires of 10 μm diameter in an X-pinch configuration on a pulsed power generator capable of producing an 80 kA current over a 50 ns rise time. We compare these findings directly to three-dimensional magneto-hydrodynamic (MHD) simulations using the MHD resistive code GORGON. Here, we demonstrate a dependence between the magnetic field ratio and ablation properties, suggesting a transition to a classical m = 0 instability far from the cross-point. Additionally, we examine the ablation properties of similar Z number nickel and copper wire X-pinches.