Published in

Springer (part of Springer Nature), Journal of Biomolecular NMR, 4(31), p. 295-310

DOI: 10.1007/s10858-005-1718-z

Links

Tools

Export citation

Search in Google Scholar

Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of α-spectrin by MAS solid-state NMR

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Water molecules are a major determinant of protein stability and are important for understanding protein-protein interactions. We present two experiments which allow to measure first the effective T(2) decay rate of individual amide proton, and second the magnetization build-up rates for a selective transfer from H(2)O to H(N) using spin diffusion as a mixing element. The experiments are demonstrated for a uniformly (2)H, (15)N labeled sample of a microcrystalline SH3 domain in which exchangeable deuterons were back-substituted with protons. In order to evaluate the NMR experimental data, as X-ray structure of the protein was determined using the same crystallization protocol as for the solid-state NMR sample. The NMR experimental data are correlated with the dipolar couplings calculated from H(2)O-H(N) distances which were extracted from the X-ray structure of the protein. We find that the H(N) T(2) decay rates and H(2)O-H(N) build-up rates are sensitive to distance and dynamics of the detected water molecules with respect to the protein. We show that qualitative information about localization and dynamics of internal water molecules can be obtained in the solid-state by interpretation of the spin dynamics of a reporter amide proton.